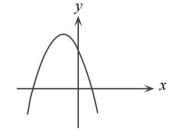
22. For how many integers k do the parabolas with equations $y = -\frac{1}{8}x^2 + 4$ and $y = x^2 - k$ intersect on or above the x-axis?

(A) 9

(B) 32

(C) 33


(D) 36

(E) 37

Fermat 2007

20. The graph of the function $y = ax^2 + bx + c$ is shown in the diagram. Which of the following must be positive?

(D) b - c **(E)** c - a

Fermat 2014

25. Points P(r,s) and Q(t,u) are on the parabola with equation $y=x^2-\frac{1}{5}mx+\frac{1}{5}n$ so that PQ=13 and the slope of PQ is $\frac{12}{5}$. For how many pairs (m,n) of positive integers with $n \leq 1000$ is r + s + t + u = 27?

(A) 28

(B) 26

(C) 27

(D) 29

(E) 25

Hypatia 2013

2. A parabola has equation $y = (x-3)^2 + 1$.

(a) What are the coordinates of the vertex of the parabola?

(b) A new parabola is created by translating the original parabola 3 units to the left and 3 units up. What is the equation of the translated parabola?

(c) Determine the coordinates of the point of intersection of these two parabolas.

(d) The parabola with equation $y = ax^2 + 4$, a < 0, touches the parabola with equation $y = (x-3)^2 + 1$ at exactly one point. Determine the value of a.

- 25. Points P(r,s) and Q(t,u) are on the parabola with equation $y=x^2-\frac{1}{5}mx+\frac{1}{5}n$ so that PQ=13 and the slope of PQ is $\frac{12}{5}$. For how many pairs (m,n) of positive integers with $n\leq 1000$ is r+s+t+u=27?
 - (A) 28
- **(B)** 26
- (C) 27
- (D) 29
- (E) 25

- 25. Points P(r,s) and Q(t,u) are on the parabola with equation $y=x^2-\frac{1}{5}mx+\frac{1}{5}n$ so that PQ=13 and the slope of PQ is $\frac{12}{5}$. For how many pairs (m,n) of positive integers with $n\leq 1000$ is r+s+t+u=27?
 - (A) 28
- **(B)** 26
- (C) 27
- (D) 29
- (E) 25

- 25. Points P(r,s) and Q(t,u) are on the parabola with equation $y=x^2-\frac{1}{5}mx+\frac{1}{5}n$ so that PQ=13 and the slope of PQ is $\frac{12}{5}$. For how many pairs (m,n) of positive integers with $n\leq 1000$ is r+s+t+u=27?
 - (A) 28
- **(B)** 26
- (C) 27
- (D) 29
- **(E)** 25

- 25. Points P(r,s) and Q(t,u) are on the parabola with equation $y=x^2-\frac{1}{5}mx+\frac{1}{5}n$ so that PQ=13 and the slope of PQ is $\frac{12}{5}$. For how many pairs (m,n) of positive integers with $n\leq 1000$ is r+s+t+u=27?
 - (A) 28
- (B) 26
- (C) 27
- (D) 29
- **(E)** 25